Micro‑Foundations (10 days, 30–45 min/day)¶
Exit checks: vectorize a transform; explain cosine similarity; stratified splits; read a confusion matrix; implement top‑k; CI green.
- F1 — NumPy muscle: vectorization; implement
minmax_scale(X)
+ test. - F2 — Linear algebra: dot/matmul;
cosine_sim_matrix(A,B)
. - F3 — Calculus: gradient of MSE; 15‑line gradient descent demo.
- F4 — Stats: bootstrap 95% CI for accuracy (1k resamples).
- F5 — DSA:
heapq.nlargest
top‑k vs sort; Big‑O sanity. - F6 — Splits: stratified train/val/test helper with fixed seed.
- F7 — Metrics: accuracy/F1; confusion matrix plot helper.
- F8 — Regularization: LogReg L2; show val improvement.
- F9 — Testing & CI: 3–4 pytest cases; keep
main
green. - F10 — Synthesis: learning curve cell + 3 insights bullets.